

Welcome to Gplot’s documentation!

Table of Contents

	Introduction

	Installation

	Install from conda

	Dependencies

	Quick start

	Documentation

	gplot module contents

	Github and Contact

	Contributing and getting help

	License

Introduction

Gplot is a (thin) wrapper around matplotlib, basemap and cartopy for
quick and easy creations of geographical plots.
It is designed to create publish-ready figures with as few lines as
possible, while preserving the possibility to fine-tune various aspects of the
plots.

Installation

Install from conda

gplot can be installed in an existing conda environment using:

conda install -c guangzhi gplot

This will install gplot and its dependencies for Python 3.

Dependencies

	Mandatory:

	OS: Linux or MacOS. Windows is not tested.

	Python: >= 3.

	numpy

	matplotlib: developed in 3.2.2. NOTE that versions later than 3.2.2 are incompatible with basemap.

	Optional:

	scipy: optional, developed in 1.2.1. For 2D interpolation in quiver plots only.

	For plotting the geography: basemap or Cartopy.

	basemap: developed in 1.2.0.

	Cartopy: developed in 0.16.0, not fully supported yet.

	For netCDF file reading: netCDF4 or CDAT or xarray or iris.

	netCDF4: developed in 1.5.5.1.

	the cdms module of CDAT: developed in 3.1.5.

	xarray: not supported yet.

	iris: not supported yet.

Quick start

After installation of gplot and basemap, create an isofill/contourf plot of
the global sea level pressure field (sample data included in the installation)
using the following snippet:

import matplotlib.pyplot as plt
import gplot
from gplot.lib import netcdf4_utils

var = netcdf4_utils.readData('msl')
lats = netcdf4_utils.readData('latitude')
lons = netcdf4_utils.readData('longitude')

figure = plt.figure(figsize=(12, 10), dpi=100)
ax = figure.add_subplot(111)
iso = gplot.Isofill(var)
gplot.plot2(var, iso, ax, xarray=lons, yarray=lats,
 title='Default basemap', projection='cyl',
 nc_interface='netcdf4')
figure.show()

The output is given below:

[image: _images/default_contourf.png]

Fig. 1 Default contourf plot of global surface pressure field (in Pa), from ERA-I.

Documentation

	 Basic workflow
	Overall design of gplot

	Basic plotting syntax

	 Isofill/Contourf plots
	The Isofill class

	Define the contour levels

	Choose the colormap

	Split the colormap colors

	Overlay with stroke

	The mappable object

	 Isoline/Contour plots
	The Isoline class

	Line width and color controls

	Use dashed line for negatives

	Label the contour lines

	The mappable object

	 Boxfill/imshow plots
	The Boxfill and Pcolor classes

	Basic plot example

	The mappable object

	 Colorbar
	Positioning of the colorbar

	Overflows on a colorbar

	Alternating top and bottom ticks of a horizontal colorbar

	 Quiver plots
	The Quiver class

	Control the quiver density

	Control the quiver lengths

	Quiver overlay

	Curved quiver plots

	The mappable object

	 Subplot layouts
	Recommended way of creating subplots

	Automatically label the subplots with alphabetic indices

	 Others
	netCDF interfaces

	Axes ticks and ticklabels

	Color for missing values

	Font size

	Default parameters

gplot module contents

	base_utils.py

	basemap_utils.py

	cdat_utils.py

	netcdf4_utils.py

	cartopy_utils.py

Github and Contact

The code of this package is hosted at https://github.com/Xunius/gplot.

For any queries, please contact xugzhi1987@gmail.com.

Contributing and getting help

We welcome contributions from the community. Please create a fork of the
project on GitHub and use a pull request to propose your changes. We strongly encourage creating
an issue before starting to work on major changes, to discuss these changes first.

For help using the package, please post issues on the project GitHub page.

License

LICENSE

Indices and tables

	Index

	Module Index

	Search Page

Basic plots

Table of Contents

	Overall design of gplot

	Basic plotting syntax

Overall design of gplot

The overarching structure of gplot is pretty simple (see Fig.2):
there are 2 major plotting classes, Plot2D and Plot2Quiver. The latter
is specifically for 2D quiver plots, and the former
handles commonly used 2D visualization types, including

	isoline/contour

	isofill/contourf

	boxfill/imshow/pcolormesh

	hatching

These 2 classes accept ndarray as inputs, which can be provided by 4 widely
used netCDF file I/O modules: netcdf4, CDAT, Iris and xarray.
Note that these are optional dependencies, and both Plot2D and
Plot2Quiver work for plain ndarray data as well.

Note

Only netcdf4 and CDAT are currently supported. For the latter, only
its cdms2 module is required.

On top of Plot2D and Plot2Quiver, plotting with geographical map
projections are supported by utilizing basemap or Cartopy, giving rise to 4
derived classes:

	Plot2Basemap: 2D plots as Plot2D but using basemap as the “backend” for geographical map projections.

	Plot2QuiverBasemap: 2D quiver plots as Plot2Quiver but using basemap as the “backend” for geographical map projections.

	Plot2Cartopy: 2D plots as Plot2D but using Cartopy as the “backend” for geographical map projections.

	Plot2QuiverCartopy: 2D quiver plots as Plot2Quiver but using Cartopy as the “backend” for geographical map projections.

Note

basemap has been deprecated, however, Cartopy is not fully mature in terms
of features and robustness. In gplot, more attention is paid on basemap
plots, and the Cartopy counterparts are largely work-in-process at the
moment.

[image: _images/gplot_schematic.png]

Fig. 2 Overarching structure of gplot.

Basic plotting syntax

To give an example of using Plot2Basemap:

figure = plt.figure(figsize=(12, 10))
ax = figure.add_subplot(111)
iso = gplot.Isofill(var)
gp = Plot2Basemap(var, iso, lons, lats, ax=ax)
gp.plot()
figure.show()

where:

	var is the ndarray input data to be plotted.

	iso is an Isofill object, which defines an isofill/contourf plot. More
details on Isofill are given in Create isofill/contourf plots.

	lons and lats give the longitude and latitude coordinates,
respectively. They define the geographical domain to generate the map.

This also illustrates the basic “syntax” of gplot’s plotting function:
there are 3 major elements that define a plot:

	var: the input array – what to plot,

	iso: the plotting method – how to plot, and

	ax: the matplotlib axis object – where to plot.

Similarly, for a 2D quiver plot example:

figure = plt.figure(figsize=(12, 10))
ax = figure.add_subplot(111)
q = gplot.Quiver(step=8)
pquiver = Plot2QuiverBasemap(u, v, q, xarray=lons, yarray=lats,
 ax=ax, projection='cyl')
pquiver.plot()

figure.show()

Note that in this case, there are 2 input arrays (u and v), the u- and
v- velocity components. And q = gplot.Quiver(step=8) defines the plotting
method.

With these 3 basic elements – input array, plotting method and axis –
provided, gplot will try to handle the remaining trifles for you, including
the axes ticks and labels, colorbar, subplot numbering etc..

Lastly, there is also a plot2() interface function in gplot that wraps
everything in a single function call. To reproduce the 1st example above, one
can use:

figure = plt.figure(figsize=(12, 10))
ax = figure.add_subplot(111)
iso = gplot.Isofill(var)
gplot.plot2(var, iso, ax, xarray=lons, yarray=lats)
figure.show()

And the 2nd example can be achieved using:

figure = plt.figure(figsize=(12, 10))
ax = figure.add_subplot(111)
q = gplot.Quiver(step=8)
gplot.plot2(u, q, ax, xarray=lons, yarray=lats, var_v=v,
 projection='cyl')
figure.show()

Note that the v- component has been provided using the var_v keyword argument.

These design choices are taken to achieve the primary goal of gplot, which is
to help create good enough plots as quickly and easily as possible.

Create isofill/contourf plots

Table of Contents

	The Isofill class

	Define the contour levels

	1. Automatically derive from input data, and a given number of levels

	2. Manually specify the contour levels.

	Choose the colormap

	Split the colormap colors

	Overlay with stroke

	The mappable object

The Isofill class

To create an isofill/contourf plot, one creates a base_utils.Isofill
object as the plotting method, and passes it to the base_utils.Plot2D
constructor or the base_utils.plot2() function.

Define the contour levels

One key element of a good isofill/contourf plot is a set of appropriately
chosen contour levels. There are basically 2 ways to define the contour levels
in base_utils.Isofill:

1. Automatically derive from input data, and a given number of levels

Your data may come with various orders of magnitudes, and sometimes it can be
a bit tricky (and annoying) to manually craft the contour levels for each and
every plot you create, particularly when you just want to have a quick read of
the data. The 1st approach comes as handy for such cases.

To automatically derive the contour levels, these input arguments to the
constructor of base_utils.Isofill are relevant:

	vars: input data array(s).

The 1st and only mandatory input argument is vars, which is the input
ndarray, or a list of arrays to be plotted. This is used to determine the
value range of the input data. Missing values (masked or nan) are omitted.

The list input form is useful when one wants to use the same set of contour
levels to plot multiple pieces of data.

	num: the desired number of contour levels.

Note that in order to derive nice-looking numbers in the contour levels, the
resultant number may be sightly different.

What is meant by “nice-looking” is that the contour level values won’t be some
floating point numbers with 5+ decimal places, like what one would get using,
for instance

>>> np.linspace(0, 30, 12)
array([0. , 2.72727273, 5.45454545, 8.18181818, 10.90909091,
 13.63636364, 16.36363636, 19.09090909, 21.81818182, 24.54545455,
 27.27272727, 30.])

Instead, base_utils.Isofill would suggest something like this:

[0.0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0]

	zero: whether 0 is allowed to be one contour level.

zero = 0 exerts no inference on the inclusion of 0.

zero = -1 prevents the number 0 from being included in the contour levels,
instead, there would be a 0-crossing contour interval, e.g. [-2, 2],
that represent the 0-level with a range.

This is very helpful in plots with a divergent colormap, e.g.
plt.cm.RdBu. Your plot will have a white contour interval, rather than
just various shades of blues and reds. The white area represents a kind of
buffer zone in which the difference is not far from 0, and the plot will
almost always end up being cleaner.

	min_level, max_level, ql, qr: determine the lower and
upper bounds of the data range to plot.

min_level and max_level are used to specify the absolute bounds. If
None (the default), these are taken from the minimum and maximum values
from vars.

ql and qr are used to specify by relative bounds: ql for the left
quantile and qr for the right quantile. E.g. ql = 0.01 takes the 0.01
left quantile as the lower bound, and qr = 0.05 takes the 0.95 quantile
as the upper bound. These are useful for preventing some outliers from inflating
the colorbar.

If both ql and min_level are given, whichever gives a greater absolute
value is chosen as the lower bound. Similarly for qr and max_level.

Note

In order to arrive at nice-looking contour level numbers,
the resultant bounds may not be exactly as requested.

If the lower/upper bound does not cover the entire data range, an extension
on the relevant side is activated:

self.ext_1 = True if self.data_min < vmin else False
self.ext_2 = True if self.data_max > vmax else False

These will be visually represented as an overflow on the colorbar.

2. Manually specify the contour levels.

Manual contour levels are simply specified by the levels keyword argument:

iso = Isofill(var, 10, levels=np.arange(-10, 12, 2))

This will override the effects from all the arguments listed in the above section,
except that overflows will still be added, if your specified levels do not cover
the entire data range.

Choose the colormap

The colormap is specified using the cmap argument, which is default to
a blue-white-red divergent colormap plt.cm.RdBu_r.

To use a different colormap, provide one from the matplotlib’s
colormap collection, e.g. cmap = plt.cm.rainbow. It is possible to give
only the name of the colormap as a string: cmap = 'rainbow'.

Split the colormap colors

Divergent colormaps are commonly used in academic works. The
plt.cm.RdBu_r colormap is one such example, with a transition from
dark blue (the minimum) to white in the middle, and to dark red (the
maximum) on the right.

The middle color (white in this case) usually corresponds to some critical
transition in the data (e.g. going from negative to positive), therefore it is
crucial to make sure they are aligned up. See an example:

import matplotlib.pyplot as plt
import gplot
from gplot.lib import netcdf4_utils

read in SST data
var2 = netcdf4_utils.readData('sst')
lats = netcdf4_utils.readData('latitude')
lons = netcdf4_utils.readData('longitude')

var2ano=var2-280. # create some negative values

figure, axes = plt.subplots(figsize=(12, 10), nrows=2, ncols=2,
 constrained_layout=True)

iso1=gplot.Isofill(var2ano, num=11, zero=1, split=0)
gplot.plot2(var2ano, iso1, axes.flat[0], legend='local',
 title='negatives and positives, split=0')

iso2=gplot.Isofill(var2ano, num=11, zero=1, split=1)
gplot.plot2(var2ano, iso2, axes.flat[1], legend='local',
 title='negatives and positives, split=1')

iso3=gplot.Isofill(var2ano, num=11, zero=1, split=2)
gplot.plot2(var2ano, iso3, axes.flat[2], legend='local',
 title='negatives and positives, split=2')

iso4=gplot.Isofill(var2, num=11, zero=1, split=2)
gplot.plot2(var2, iso4, axes.flat[3], legend='local',
 title='all positive, split=2')

figure.show()
figure.tight_layout()

The output is given in Fig.3 below:

[image: _images/split_comparisons.png]

Fig. 3 Effects of the split argument.
(a) do not split the colormap for data with negative and positive values (split=0).
(b) split the colormap if data have both negative and positive values (split=1).
(c) force split the colormap when data have both negative and positive values (split=2).
(c) force split the colormap when data have only positive values (split=2).

To summarize:

	split=0: do not split the colormap.

	split=1: split the colormap if data have both positive and negative values. Do not split if data have only negative or only positive values.

	split=2: force split. If the data have both positive and negative values, the effect
is the same as split=1. If data have only positive (negative) values, will only
use the right (left) half of the colormap.

Note

Positive v.s. negative is one way of splitting the data range into 2 halves,
at the dividing value of 0.
It is possible to use an arbitray dividing value, by using the vcenter argument.
E.g. iso = gplot.Isofill(var, num=10, split=2, vcenter=10)

Overlay with stroke

It is possible to stroke the isofill/contourf levels with a layer of thin
contour lines. E.g.

import matplotlib.pyplot as plt
import gplot
from gplot.lib import netcdf4_utils

read in SLP data
var1 = netcdf4_utils.readData('msl')
lats = netcdf4_utils.readData('latitude')
lons = netcdf4_utils.readData('longitude')

figure, (ax1, ax2) = plt.subplots(figsize=(12, 5), nrows=1, ncols=2,
 constrained_layout=True)

iso1 = gplot.Isofill(var1)
gplot.plot2(var1, iso1, ax1, title='Basemap isofill without stroke',
 projection='cyl')

iso2 = gplot.Isofill(var1, stroke=True)
gplot.plot2(var1, iso2, ax2, title='Basemap isofill with stroke',
 projection='cyl')
figure.show()

The result is given in Fig.4 below:

[image: _images/stroke_comparison.png]

Fig. 4 Effects of the stroke argument.
(a) isofill plot without stroke.
(b) isofill plot with stroke.

stroke is set to False by default. To further control the line width of
the stroke, use the stroke_lw argument, which is default to 0.2.
The line color is default to a grey color (stroke_color = 0.3), and line style
default to solid (stroke_linestyle = '-').

The mappable object

gplot calls matplotlib’s (or basemap’s, if it is using Plot2Basemap)
contourf() function under the hood. The function returns a mappable object,
e.g. cs = plt.contourf(data). This mappable object is stored as
an attribute of the base_utils.Plot2D (or
basemap_utils.Plot2Basemap) object:

>>> pobj = Plot2Basemap(var, iso, lons, lats, ax=ax)
>>> pobj.plot()
>>> pobj.cs
<matplotlib.contour.QuadContourSet object at 0x7f0e3e6b4550>

The same plotobj is returned by the base_utils.plot2() function, therefore,
the mappable object can be retrieved using:

>>> pobj = gplot.plot2(var, iso, ax, xarray=lons, yarray=lats)
>>> pobj.cs
<matplotlib.contour.QuadContourSet object at 0x7f0e3e6b4550>

Create isoline/contour plots

Table of Contents

	The Isoline class

	Line width and color controls

	Use dashed line for negatives

	Label the contour lines

	The mappable object

The Isoline class

To create an isoline/contour plot, one creates a base_utils.Isoline
object as the plotting method, and passes it to the base_utils.Plot2D
constructor or the base_utils.plot2() function.

In many aspects, the base_utils.Isoline class is similar as
base_utils.Isofill (it is in fact derived from the latter).
They share these arguments in their __init__() methods:

	vars

	num

	zero

	split

	levels

	min_level

	max_level

	ql

	qr

	vcenter

	cmap

More explanations of these arguments are given in Create isofill/contourf plots.

There are a few arguments unique to Isoline, and are introduced below.

Line width and color controls

Line width is controlled by the line_width input argument, which is default
to 1.0.
See Fig.5b for an example of changing the line width to a
larger value.

Line color, by default, is determined by the colormap (cmap).
Alternatively, one can use only the black color by specifying black = True.
Or, use a different color for all contour lines color = 'blue'.
For single colored isoline plots, the colorbar will not be plotted.
See Fig.5b,c,d for examples of monochromatic isoline plots.

[image: _images/isoline_comparisons.png]

Fig. 5 Isoline plot examples. Complete script can be found in tests.basemap_tests.test_basemap_isolines()
(a) default isoline plot: colored contours, linewidth=1.
(b) isoline plot with linewidth=2.0, color='b'.
(c) isoline plot with black=True, dash_negative=True.
(d) isoline plot with black=True, dash_negative=True, bold_lines=[0,], label=True, label_box=True.

Use dashed line for negatives

It is also common to use dashed lines for negative contours and solid lines
for positive ones, with optionally a 0-level contour as bold. These can
be achieved using:

isoline = gplot.Isoline(var, 10, zero=1, black=True, dash_negative=True,
 bold_lines=[0,])

See Fig.5c,d for examples.

Note

It is possible to set multiple levels as bold, by specifying them in a list
to bold_lines.

Label the contour lines

For plots with monochromatic contour lines, one needs to provide a different mechanism
for the reading of contour levels, such as labelling out the contours. This can
be achieved by passing in the label = True argument.

The format of the labels can be controlled by label_fmt. If left as label_fmt = None,
it will use a default Formatter.
An optional bounding box can be added by label_box = True, and one can
change the box background color by altering label_box_color.
See Fig.5d for an example.

The mappable object

gplot calls matplotlib’s (or basemap’s, if it is using Plot2Basemap)
contour() function under the hood. The function returns a mappable object,
e.g. cs = plt.contour(data). This mappable object is stored as
an attribute of the base_utils.Plot2D (or
basemap_utils.Plot2Basemap) object:

>>> plotobj = Plot2Basemap(var, iso, lons, lats, ax=ax)
>>> plotobj.plot()
>>> plotobj.cs
<matplotlib.contour.QuadContourSet object at 0x7f0e3e6b4550>

The same plotobj is returned by the base_utils.plot2() function,
therefore, the mappable object can be retrieved using:

>>> pobj = gplot.plot2(var, iso, ax, xarray=lons, yarray=lats)
>>> pobj.cs
<matplotlib.contour.QuadContourSet object at 0x7f0e3e6b4550>

Create boxfill/imshow plots

Table of Contents

	The Boxfill and Pcolor classes

	Basic plot example

	The mappable object

The Boxfill and Pcolor classes

A boxfill/imshow plot is created by defining a base_utils.Boxfill
plotting method, and passing it to the base_utils.Plot2D
constructor or the base_utils.plot2() function.

All the input arguments to the __init__() method of
base_utils.Boxfill are the same as those in
base_utils.Isofill:

	vars

	split

	min_level

	max_level

	ql

	qr

	vcenter

	cmap

More explanations of these arguments are given in Create isofill/contourf plots.

The base_utils.Pcolor class shares the same signature as
base_utils.Boxfill, and their usages are also identical.
(Honestly, is there any difference between the two?)

Basic plot example

A boxfill/imshow/pcolormesh plot is also relatively easier to create. See a
simple example below:

import matplotlib.pyplot as plt
import gplot
from gplot.lib import netcdf4_utils

var = netcdf4_utils.readData('msl')
lats = netcdf4_utils.readData('latitude')
lons = netcdf4_utils.readData('longitude')

figure, axes = plt.subplots(figsize=(12, 6), nrows=1, ncols=2,
 constrained_layout=True)
box = gplot.Boxfill(var1)
pc = gplot.Pcolor(var1)
gplot.plot2(var1, box, axes[0], title='default Boxfill', projection='cyl',
 legend='local')
gplot.plot2(var1, pc, axes[1], title='default Pcolor', projection='cyl',
 legend='local')
figure.show()

The result is given in Fig.6 below:

[image: _images/boxfill_pcolor.png]

Fig. 6 Boxfill (a) and Pcolor (b) plot examples.

The mappable object

Same as an isofill/isoline plot, the mappable object of a
boxfill/imshow/pcolormesh plot is stored as an attribute of the
base_utils.Plot2D (or basemap_utils.Plot2Basemap)
object. See The mappable object.

Add colorbars to plots

Table of Contents

	Positioning of the colorbar

	Overflows on a colorbar

	Alternating top and bottom ticks of a horizontal colorbar

Positioning of the colorbar

A colorbar is automatically added for an Isofill/contourf, a
Boxfill/imshow and a polychromatic Isoline/contour plot.

The positioning of the colorbar is controlled by the legend keyword argument
to the base_utils.Plot2D.__init__(), or the
base_utils.plot2() function. It can have 1 of the 3 possible values:

	legend = 'global': the default. If there are more than 1 subplots in the figure, all subplots
share the same colorbar, which is created by the 1st subplot. If only 1 subplot in
the figure, same as legend = 'local'.

	legend = 'local': subplots in the figure have their own colorbars.

	legend = None: don’t plot the colorbar.

Note

gplot at the moment does not support colorbars that are shared by a subset
of the subplots, like in the examples given in the matplotlib tutorial [https://matplotlib.org/stable/gallery/subplots_axes_and_figures/colorbar_placement.html].

Additionally, the legend_ori argument specifies the orientation of the colorbar:

	legend_ori = 'horizontal': horizontal colorbar.

	legend_ori = 'vertical': vertical colorbar.

Note

Only the right (for vertical colorbar) and bottom (for horizontal colorbar)
side of the subplot/figure placement are supported. Top and left side
placement are not supported in gplot. However, one can create the colorbar
on their own, by setting legend = None, and using the returned mappable
object.

Overflows on a colorbar

Overflow is represented by a triangle on either end of the colorbar (see
Fig.7 below for an example). It signals that all values
below the minimum overflow level are represented by the color of the left
triangle, and all values above the maximum overflow level by the right
triangle. Namely, one chooses to selectively plot only a sub-range of the
data values.

Overflows are ONLY added if the range of data exceeds the range plotted.
And they can be introduced by setting the min_level or ql arguments (for
the left overflow), and the max_level or qr arguments (for the right
overflow).

See also

base_utils.Isofill, base_utils.Isoline, base_utils.Boxfill

[image: _images/isofill_overflow.png]

Fig. 7 Isofill plot with overflows on both sides.

Alternating top and bottom ticks of a horizontal colorbar

In an Isofill/contourf plot, if the number of levels is too
big, the tick labels of a horizontal colorbar may start to overlap with each
other. In some cases this can be solved by putting half of the tick labels on
the top side and half on the bottom side (see Fig.7 above
or this figure for examples).

This functionality is automatically enabled, but only for
Isofill/contourf plots with horizontal colorbars.

Note

If the number of contour levels keeps on growing, the tick labels
may start to overlap again. In such cases, it is worth trying either reducing the
level numbers, or using a smaller font size.

Create quiver plots

Table of Contents

	The Quiver class

	Control the quiver density

	Control the quiver lengths

	Quiver overlay

	Curved quiver plots

	The mappable object

The Quiver class

To create a 2D quiver plot, one creates a base_utils.Quiver
object as the plotting method, and passes it to the base_utils.Plot2Quiver
constructor or the base_utils.plot2() function.

The __init__() of base_utils.Quiver takes these input arguments:

	step

	reso

	scale

	keylength

	linewidth

	color

	alpha

linewidth, color and alpha should be self-explanatory. Others are explained
in further details below.

Control the quiver density

When the input data have too fine a resolution, the quiver plot may end up being
too dense and not quite readable (see Fig.8a below for an
example). This can be solved by either

	sub-sampling the data with a step: u = u[::step, ::step]; v = v[::step, ::step], or

	regridding the data to a lower resolution reso.

Method 1 is controlled by the step input argument (see Fig.8b below for an example), and the latter method the reso argument
(see Fig.8c,d). If both are given, the
latter one takes precedence.

Note

regridding requires scipy as an optional dependency.

[image: _images/quiver_comparison1.png]

Fig. 8 Density control of a quiver plot.
(a) default quiver density q = Quiver().
(b) reduced density by sub-sampling: q = Quiver(step=8).
(c) reduced density by regridding: q = Quiver(reso=4).
(d) reduced density by regridding: q = Quiver(reso=8).

Control the quiver lengths

The lengths of the quiver arrows are controlled by the scale argument. A
larger scale value creates shorter arrows. When left as the default None,
it will try to derive a suitable scale level for the given inputs.

The length of the reference quiver arrow is controlled by the keylength
argument. Given a set scale, a larger keylength makes the reference
quiver arrow longer. Similar as scale, keylength is default to
None, and the plotting function will try to derive a suitable value
automatically for you.

Fig.9 below shows some examples of controlling the lengths.

[image: _images/quiver_comparison2.png]

Fig. 9 Length control of a quiver plot.
(a) automatic scale q = Quiver(step=8, scale=None).
(b) specify scale=200: q = Quiver(step=8, scale=200).
(c) specify scale=500: q = Quiver(step=8, scale=500).
(d) specify scale=500, keylength=20: q = Quiver(step=8, scale=500, keylength=20).

Quiver overlay

It is common to see quiver plots superimposed on top of an isofill/contourf plot.
To achieve this, simply re-use the same axis object in the isofill/contourf
plot, and the subsequent quiver plot. E.g.

figure = plt.figure(figsize=(12, 10), dpi=100)
ax = figure.add_subplot(111)
iso = gplot.Isofill(var1)
q = gplot.Quiver(reso=5, scale=500)

gplot.plot2(var1, iso, ax, projection='cyl')
gplot.plot2(u, q, var_v=v, xarray=lons, yarray=lats,
 ax=ax, title='quiver overlay', projection='cyl')
figure.show()

The result is given in Fig.10 below.

[image: _images/quiver_overlay.png]

Fig. 10 Quiver plot on top of isofill.

Curved quiver plots

Sometimes one needs to visualize a vector field in a region where the vector
magnitudes are rather small, and a larger domain is needed to be shown at the
same time to give enough context. In such cases, when the scale is adjusted
to a comfortable value for the target region to be readable, other regions may
have quiver arrows that are too large and the plot looks messy.

One possible solution is to use curved quivers rather than straight ones.
matplotlib does not support this out-of-the-box, some hacks are used to
achieve this. Due credits to the author of this repo [https://github.com/kieranmrhunt/curved-quivers], and this stackoverflow
answer [https://stackoverflow.com/a/65607512/2005415].

A curved quiver plot is done by passing in curve=True, e.g.:

figure = plt.figure(figsize=(12, 10), dpi=100)
ax = figure.add_subplot(111)
q = gplot.Quiver(step=8)
pquiver = Plot2QuiverBasemap(
 u, v, q, xarray=lons, yarray=lats, ax=ax, title='curved quiver',
 projection='cyl', curve=True)
pquiver.plot()

figure.show()

The result is given in Fig.11 below.

[image: _images/curved_quiver.png]

Fig. 11 Curved quiver plot.

Note

Curved quiver plot takes notably longer to generate, and is considered
experimental at the moment.

The mappable object

The mappable object of a quiver plot is stored as an attribute of the
base_utils.Plot2Quiver (or
basemap_utils.Plot2QuiverBasemap) object:

>>> q = gplot.Quiver()
>>> pobj = Plot2QuiverBasemap(u, v, q, xarray=lons, yarray=lats, ax=ax, projection='cyl')
>>> pobj.plot()
>>> pobj.quiver
<matplotlib.quiver.Quiver object at 0x7f2e03aed750>

Managing subplots

Table of Contents

	Recommended way of creating subplots

	Automatically label the subplots with alphabetic indices

Recommended way of creating subplots

In academic works, people usually compose a single figure with multiple
subplots, sometimes to facilitate comparisons, but mostly to make the most of
the valuable real estates of a graph.

There are more than one ways of creating subplots in matplotlib.
For usage with gplot, the recommended way of creating subplots is:

figure, axes = plt.subplots(nrows=2, ncols=2, constrained_layout=True)

The returned axes is a 2D array, holding the axes for a 2x2 grid layout.
To iterate through the axes, one can use:

for ii, axii in enumerate(axes.flat):
 rowii, colii = np.unravel_index(ii, (nrows, ncols))
 ...

Note

the constrained_layout=True argument is recommended. This will
adjust the spacings of the subplots to avoid overlaps between subplots, and
wasted spaces as well. Do not use figure.tight_layout() afterwards,
as it tends to mess up the placement of a shared, global colorbar.

Note

the placement of a globally shared colorbar is currently not as robust
as a local colorbar. One may find the global colorbar tick labels
overlaping with those in the bottom row x-axis, if the constrained_layout
is not set to True.

Automatically label the subplots with alphabetic indices

The title input argument to the base_utils.Plot2D constructor
or the base_utils.plot2() function is used to label the subplots. It
is defaulted to None. The clean argument also has some effects. They
function a bit differently in different scenarios:

	title = None:

	If figure has only 1 subplot: no title is drawn.

	If figure has more than 1 subplots, an alphabetic index is used as the
subplot title, e.g. (a) for the 1st subplot, (b) for the 2nd, and
so on. The order is row-major. After using up all the 26 letters, it will
cycle through them again but with 2 letters at a time, e.g. (aa) for
the 27th subplots. This rarely happens in practice.

	title = some_text:

	If figure has only 1 subplot: use some_text as the title.

	If figure has more than 1 subplots, an alphabetic index is prepended
to form the subplot title: (a) some_text.
An example of this can be seen here.

	title = (x) some_text:

Where x is an arbitrary string. Use (x) some_text as the title. This
can be used to override the automatic row-major ordering of the subplot
indices. For instance, you want to label it as (k) when
the subplot is at a position of (h).

	title = 'none' or clean = True: no title is drawn in any circumstances.

Other asepcts

Table of Contents

	netCDF interfaces

	Axes ticks and ticklabels

	Color for missing values

	Font size

	Default parameters

netCDF interfaces

The
base_utils.Plot2D,
base_utils.Plot2Basemap and
base_utils.Plot2Cartopy classes (and their derived classes,
base_utils.Plot2Quiver,
base_utils.Plot2QuiverBasemap and
base_utils.Plot2QuiverCartopy
) all
expect plain ndarray as input data. However, the
base_utils.plot2() interface function can accept other data types.
E.g. the netCDF data read in by CDAT is a TransientVariable
object, which is a derived type of np.ma.MaskedArray, and carries the
metadata with it. Other netCDF file I/O modules, like Iris and Xarray also
provide their own data types. The nc_interface argument to the
base_utils.plot2() function tells the function which module has
been used in reading in the netCDF data, and some preprocessing can be done
accordingly to retrieve some necessary information, including the x- and y-
coordinates, data units etc..

nc_interface can be one of these:

	netcdf

	cdat

	iris

	xarray

Note

Currently, only netcdf and cdat are supported.

Axes ticks and ticklabels

The axes ticks and ticklabels are controlled by the label_axes keyword
argument to the __init__ method of base_utils.Plot2D and
base_utils.plot2(). It is defaulted to True. The clean
keyword argument also has some effects.

The different values of label_axes are:

	True: default.

	If figure has only 1 subplot, default to plot the left, bottom and right
hand side axes ticks and ticklabels.

	If figure has more than 1 subplots, default to plot only the exterior facing
(except for the top side)
axes ticks and ticklabels. E.g. in a 2x2 subplot layout, the top-left subplot
has only the left axes ticks/ticklabels, the bottom-right subplot only the
right and bottom axes ticks/ticklabels, etc.. See this figure for an example. This is the same as the sharex and
sharey options in plt.subplots(sharex=True, sharey=True).

	False: turn off axes ticks/ticklabels on all sides.

	'all': turn on axes ticks/ticklabels on all sides.

	(left, right, top, bottom): a 4 boolean element tuple, specifying the
left, right, top and bottom side axes ticks/ticklabels. See Fig.12
for an example.

Note

Setting clean=True also turns off axes ticks/tickslabels on all sides.

Note

Notice that in Fig.12, when the bottom side axes ticklabels
are turned off, the spacing between bottom axis and colorbar also adjusts
so as to avoid leaving a wasted space.

Additionally, setting axes_grid = True will add axis grid lines. This is
turned off by default, and is independent from the axis ticks/ticklabels:
one can have only axes grid lines without any ticks/ticklabels.

[image: _images/label_axes_specified.png]

Fig. 12 Specify the axis ticks/ticklabels by setting label_axes = (0, 1, 1, 0).
The 4 elements in the tuple correspond to the left, right, top, bottom
sides, respectively.

Color for missing values

If not set, matplotlib sets the default background color to white, which
also appears in many colormaps (e.g. the plt.cm.RdBu_r used as default
colormap of gplot). Therefore it is easy to confuse your audience with the
missing values and valid data values that happen to be represented with white
color (or something very close to white). See the comparison below:

[image: _images/sst_missing.png]

Fig. 13 Comparison of the missing values as represented with a white background
(top) and grey background (bottom).

Therefore, to avoid such ambiguities, the missing values are represented
by fill_color in gplot, using:

self.ax.patch.set_color(self.fill_color)

where fill_color is a keyword argument to the __init__ method of
base_utils.Plot2D and
base_utils.plot2(). It is defaulted to a grey color (0.8).

Font size

The font sizes are controlled by the fontsize keyword
argument to the __init__ method of base_utils.Plot2D and
base_utils.plot2(). It is defaulted to 11, and affects the sizes
of these texts in a plot:

	title

	axes ticklabels

	axes labels

	colorbar ticklabels and units

	reference quiver key units

When the figure has more than 1 subplots, the font sizes are adjusted by
the following empirical formula:

\[s_{adj} = \frac{7}{MAX\{n_r, n_c\}} + s_0\]

where:

	\(s_0\) is the fontsize argument (default to 11).

	\(n_r, n_c\): the number of rows, columns in the subplot layout.

	\(s_{adj}\): the adjusted font size for the subplot.

Default parameters

gplot defines the following dictionary of default parameters:

Default parameters
rcParams = {
 'legend': 'global',
 'title': None,
 'label_axes': True,
 'axes_grid': False,
 'fill_color': '0.8',
 'projection': 'cyl',
 'legend_ori': 'horizontal',
 'clean': False,
 'bmap': None,
 'isgeomap': True,
 'fix_aspect': False,
 'nc_interface': 'cdat',
 'geo_interface': 'basemap',
 'fontsize': 11,
 'verbose': True,
 'default_cmap': plt.cm.RdBu_r
}

The base_utils.rcParams dict can be altered to make a change
persistent in a Python session. And the base_utils.restoreParams() can
be used to restore the original values. E.g.

gplot.rcParams['fontsize'] = 4

test_basemap_default()
test_basemap_isofill_overflow()

gplot.restoreParams()

test_basemap_isolines()

Documentation page for base_utils.py

Basic 2D plotting functions and classes.

	Contains:
	
	utility functions.

	plotting method classes.

	plotting wrapper classes, from which equivalent geographical plotting
classes are inherited.

Memebers in this module are available under the gplot namespace:

gplot.xxx

Author: guangzhi XU (xugzhi1987@gmail.com)
Update time: 2021-02-13 10:06:58.

	
class base_utils.Boxfill(vars, split=2, min_level=None, max_level=None, ql=None, qr=None, vcenter=0, cmap=None, verbose=True)

	Plotting method for boxfill/imshow plots

	
__init__(vars, split=2, min_level=None, max_level=None, ql=None, qr=None, vcenter=0, cmap=None, verbose=True)

	Plotting method for boxfill/imshow plots

	Parameters

	vars (ndarray or list) – if ndarray, input data to create 2d plot
from. If list, a list of ndarrays.

	Keyword Arguments

	
	split (int) – whether to split the colormap at a given value (<vcenter>) into
2 parts or not. Can be 1 of these 3 values:
0: do not split.
1: split at <vcenter> only if range of data in <vars> strides

<vcenter>.

2: force split at <vcenter>.
If split and data range strides across <vcenter>, will use
the lower half of the colormap for values <= <vcenter>, the
upper half of the colormap for values >= <vcenter>.
If split and data range on 1 side of <vcenter>, will only use
only half of the colormap range, depending on whether data
are on which side of <vcenter>.

	levels (list, tuple or 1darray) – specified contour levels. If not
given, compute contour levels using <num>, <zero>, <min_level>,
<max_level>, <ql>, <qr>.

	min_level (float or None) – specified minimum level to plot. If None,
determine from <ql> if given. If both <min_level> and <ql> are
None, use minimum value from <vars>. If both given, take the larger.

	max_level (float or None) – specified maximum level to plot. If None,
determine from <qr> if given. If both <max_level> and <qr> are
None, use maximum value from <vars>. If both given, take the smaller.

	ql (float or None) – specified minimum left quantile to plot. If None,
determine from <min_level> if given. If both <min_level> and <ql> are
None, use minimum value from <vars>. If both given, take the larger.

	qr (float or None) – specified maximum right quantile (e.g. 0.01 for
the 99th percentile) to plot. If None,
determine from <max_level> if given. If both <max_level> and <qr> are
None, use maximum value from <vars>. If both given, take the smaller.

	vcenter (float) – value at which to split the colormap. Default to 0.

	cmap (matplotlib colormap or None) – colormap to use. If None, use
the default in rcParams[‘default_cmap’].

	verbose (bool) – whether to print some info or not.

	
class base_utils.GIS(xpixels=2000, dpi=96, verbose=True)

	Plotting method for GIS plots

	
__init__(xpixels=2000, dpi=96, verbose=True)

	Plotting method for GIS plots

	Keyword Arguments

	
	xpixels (int) – plot size.

	dpi (int) – dpi.

	verbose (bool) – whats this?

	
class base_utils.Hatch(hatch='.', color='k', alpha=1.0)

	Plotting method for hatching plots

	
__init__(hatch='.', color='k', alpha=1.0)

	Plotting method for hatching plots

	Keyword Arguments

	
	hatch (str) – style of hatching. Choices:

	'O' ('.', '/', '//', '', '\', '*', '-', '+', 'x', 'o',) –

	alpha (float) – transparent level, in range of [0, 1].

	
class base_utils.Isofill(vars, num=15, zero=1, split=1, levels=None, min_level=None, max_level=None, ql=None, qr=None, vcenter=0, cmap=None, stroke=False, stroke_color='0.3', stroke_lw=0.2, stroke_linestyle='-', verbose=True)

	Plotting method for isofill/contourf plots

	
__init__(vars, num=15, zero=1, split=1, levels=None, min_level=None, max_level=None, ql=None, qr=None, vcenter=0, cmap=None, stroke=False, stroke_color='0.3', stroke_lw=0.2, stroke_linestyle='-', verbose=True)

	Plotting method for isofill/contourf plots

	Parameters

	vars (ndarray or list) – if ndarray, input data to create 2d plot
from. If list, a list of ndarrays.

	Keyword Arguments

	
	num (int) – the desired number of contour levels. NOTE that the
resultant number may be slightly different.

	zero (int) – whether 0 is allowed to be a contour level. -1 for not allowed,
0 or 1 otherwise.

	split (int) – whether to split the colormap at a given value (<vcenter>) into
2 parts or not. Can be 1 of these 3 values:
0: do not split.
1: split at <vcenter> only if range of data in <vars> strides

<vcenter>.

2: force split at <vcenter>.
If split and data range strides across <vcenter>, will use
the lower half of the colormap for values <= <vcenter>, the
upper half of the colormap for values >= <vcenter>.
If split and data range on 1 side of <vcenter>, will only use
only half of the colormap range, depending on whether data
are on which side of <vcenter>.

	levels (list, tuple or 1darray) – specified contour levels. If not
given, compute contour levels using <num>, <zero>, <min_level>,
<max_level>, <ql>, <qr>.

	min_level (float or None) – specified minimum level to plot. If None,
determine from <ql> if given. If both <min_level> and <ql> are
None, use minimum value from <vars>. If both given, take the larger.

	max_level (float or None) – specified maximum level to plot. If None,
determine from <qr> if given. If both <max_level> and <qr> are
None, use maximum value from <vars>. If both given, take the smaller.

	ql (float or None) – specified minimum left quantile to plot. If None,
determine from <min_level> if given. If both <min_level> and <ql> are
None, use minimum value from <vars>. If both given, take the larger.

	qr (float or None) – specified maximum right quantile (e.g. 0.01 for
the 99th percentile) to plot. If None,
determine from <max_level> if given. If both <max_level> and <qr> are
None, use maximum value from <vars>. If both given, take the smaller.

	vcenter (float) – value at which to split the colormap. Default to 0.

	cmap (matplotlib colormap or None) – colormap to use. If None, use
the default in rcParams[‘default_cmap’].

	stroke (bool) – whether to overlay a layer of thin contour lines on
top of contourf.

	stroke_color (str or color tuple) – color to plot the overlying
thin contour lines.

	stroke_lw (float) – line width to plot the overlying thin contour
lines.

	stroke_linestyle (str) – line style to plot the overlying thin
contour lines.

	verbose (bool) – whether to print some info or not.

	
class base_utils.Isoline(vars, num=15, zero=1, split=1, levels=None, min_level=None, max_level=None, ql=None, qr=None, vcenter=0, cmap=None, black=False, color=None, linewidth=1.0, alpha=1.0, dash_negative=True, bold_lines=None, label=False, label_fmt=None, label_box=False, label_box_color='w', verbose=True)

	Plotting method for isoline/contour plots

	
__init__(vars, num=15, zero=1, split=1, levels=None, min_level=None, max_level=None, ql=None, qr=None, vcenter=0, cmap=None, black=False, color=None, linewidth=1.0, alpha=1.0, dash_negative=True, bold_lines=None, label=False, label_fmt=None, label_box=False, label_box_color='w', verbose=True)

	Plotting method for isoline/contour plots

	Parameters

	vars (ndarray or list) – if ndarray, input data to create 2d plot
from. If list, a list of ndarrays.

	Keyword Arguments

	
	num (int) – the desired number of contour levels. NOTE that the
resultant number may be slightly different.

	zero (int) – whether 0 is allowed to be a contour level. -1 for not allowed,
0 or 1 otherwise.

	split (int) – whether to split the colormap at a given value (<vcenter>) into
2 parts or not. Can be 1 of these 3 values:
0: do not split.
1: split at <vcenter> only if range of data in <vars> strides

<vcenter>.

2: force split at <vcenter>.
If split and data range strides across <vcenter>, will use
the lower half of the colormap for values <= <vcenter>, the
upper half of the colormap for values >= <vcenter>.
If split and data range on 1 side of <vcenter>, will only use
only half of the colormap range, depending on whether data
are on which side of <vcenter>.

	levels (list, tuple or 1darray) – specified contour levels. If not
given, compute contour levels using <num>, <zero>, <min_level>,
<max_level>, <ql>, <qr>.

	min_level (float or None) – specified minimum level to plot. If None,
determine from <ql> if given. If both <min_level> and <ql> are
None, use minimum value from <vars>. If both given, take the larger.

	max_level (float or None) – specified maximum level to plot. If None,
determine from <qr> if given. If both <max_level> and <qr> are
None, use maximum value from <vars>. If both given, take the smaller.

	ql (float or None) – specified minimum left quantile to plot. If None,
determine from <min_level> if given. If both <min_level> and <ql> are
None, use minimum value from <vars>. If both given, take the larger.

	qr (float or None) – specified maximum right quantile (e.g. 0.01 for
the 99th percentile) to plot. If None,
determine from <max_level> if given. If both <max_level> and <qr> are
None, use maximum value from <vars>. If both given, take the smaller.

	vcenter (float) – value at which to split the colormap. Default to 0.

	cmap (matplotlib colormap or None) – colormap to use. If None, use
the default in rcParams[‘default_cmap’].

	black (bool) – use black lines instead of colored lines.

	color (str or color tuple) – color to plot the contour lines.

	linewidth (float) – line width to plot the contour lines.

	alpha (float) – transparent level, in range of [0, 1].

	dash_negative (bool) – whether to use dashed lines for negative
contours.

	bols_lines (list if None) – if a list, values to highlight using bold lines
(line width scaled by 2.0).

	label (bool) – whether to label the contour lines or not.

	label_fmt (str or dict or None) – if <label> is True, format string to format
contour levels. E.g. ‘%0.2f’. If None, automatically derive
a format suitable for the contour levels.

	label_box (bool) – whether to put contour labels in a bounding box
with background color or not.

	label_box_color (str or color tuple) – if <label_box> is True, the
background color for the bounding boxes for the labels.

	verbose (bool) – whether to print some info or not.

	
class base_utils.Pcolor(vars, split=2, min_level=None, max_level=None, ql=None, qr=None, vcenter=0, cmap=None, verbose=True)

	Plotting method for pcolormesh plots

	
__init__(vars, split=2, min_level=None, max_level=None, ql=None, qr=None, vcenter=0, cmap=None, verbose=True)

	Plotting method for pcolormesh plots

	Parameters

	vars (ndarray or list) – if ndarray, input data to create 2d plot
from. If list, a list of ndarrays.

	Keyword Arguments

	
	split (int) – whether to split the colormap at a given value (<vcenter>) into
2 parts or not. Can be 1 of these 3 values:
0: do not split.
1: split at <vcenter> only if range of data in <vars> strides

<vcenter>.

2: force split at <vcenter>.
If split and data range strides across <vcenter>, will use
the lower half of the colormap for values <= <vcenter>, the
upper half of the colormap for values >= <vcenter>.
If split and data range on 1 side of <vcenter>, will only use
only half of the colormap range, depending on whether data
are on which side of <vcenter>.

	levels (list, tuple or 1darray) – specified contour levels. If not
given, compute contour levels using <num>, <zero>, <min_level>,
<max_level>, <ql>, <qr>.

	min_level (float or None) – specified minimum level to plot. If None,
determine from <ql> if given. If both <min_level> and <ql> are
None, use minimum value from <vars>. If both given, take the larger.

	max_level (float or None) – specified maximum level to plot. If None,
determine from <qr> if given. If both <max_level> and <qr> are
None, use maximum value from <vars>. If both given, take the smaller.

	ql (float or None) – specified minimum left quantile to plot. If None,
determine from <min_level> if given. If both <min_level> and <ql> are
None, use minimum value from <vars>. If both given, take the larger.

	qr (float or None) – specified maximum right quantile (e.g. 0.01 for
the 99th percentile) to plot. If None,
determine from <max_level> if given. If both <max_level> and <qr> are
None, use maximum value from <vars>. If both given, take the smaller.

	vcenter (float) – value at which to split the colormap. Default to 0.

	cmap (matplotlib colormap or None) – colormap to use. If None, use
the default in rcParams[‘default_cmap’].

	verbose (bool) – whether to print some info or not.

	
class base_utils.Plot2D(var, method, ax=None, xarray=None, yarray=None, title=None, label_axes=True, axes_grid=False, legend='global', legend_ori='horizontal', clean=False, fontsize=None, fill_color=None)

	Base 2D plotting class

For geographical plots, see Plot2Basemap or Plot2Cartopy,
which handles equivalent plotting with geographical map projections.

	
__init__(var, method, ax=None, xarray=None, yarray=None, title=None, label_axes=True, axes_grid=False, legend='global', legend_ori='horizontal', clean=False, fontsize=None, fill_color=None)

	
	Parameters

	
	var (ndarray) – input data to plot. Determines what to plot.
Mush have dimensions >= 2.
For data with rank>2, take the slab from the last 2 dimensions.

	method (PlotMethod) – plotting method. Determines how to plot.
Could be Isofill, Isoline, Boxfill, Quiver, Shading, Hatch, GIS.

	Keyword Arguments

	
	ax (matplotlib axis or None) – axis obj. Determines where to plot.
If None, create a new.

	xarray (1darray or None) – array to use as the x-coordinates. If None,
use the indices of the last dimension: np.arange(slab.shape[-1]).

	yarray (1darray or None) – array to use as the y-coordinates. If None,
use the indices of the 2nd last dimension: np.arange(slab.shape[-2]).

	title (str or None) – text as the figure title if <ax> is the
single plot in the figure. If None, automatically
get an alphabetic subtitle if <ax> is a subplot, e.g. ‘(a)’
for the 1st subplot, ‘(d)’ for the 4th one. If str and <ax>
is a subplot, prepend <title> with the alphabetic index.
One can force overriding the alphabetic index by giving a title
str in the format of ‘(x) xxxx’, e.g. ‘(p) subplot-p’.

	label_axes (bool or 'all' or tuple) – controls axis ticks and
ticklabels. If True, don’t exert any inference other than
changing the ticklabel fontsize, and let matplotlib put the
ticks and ticklabels (i.e. default only left and bottom axes).
If False, turn off all ticks and ticklabels.
If ‘all’, plot ticks and ticks labels on all 4 sides.
If (left, right, top, bottom),
specify which side to plot ticks/ticklabels. Each swith is a
bool or binary. If None, will set the ticks/ticklabels such
that the interior subplots have no ticks/ticklabels, edge
subplots have ticks/ticklabels on the outer edges, i.e. similar
as the ‘sharex’, ‘sharey’ options. Location of the subplot
is determined from return of ax.get_geometry().

	axes_grid (bool) – whether to add axis grid lines.

	legend (str or None) – controls whether to share colorbar or not.
A colorbar is only plotted for Isofill/Isoline plots.
If None, don’t put colorbar. If ‘local’, <ax> has its own
colorbar. If ‘global’, all subplots in the figure share a
single colorbar, which is created by the 1st subplot in the
figure, which is determined from the return of ax.get_geometry().

	legend_ori (str) – orientation of colorbar. ‘horizontal’ or ‘vertical’.

	clean (bool) – if False, don’t plot axis ticks/ticklabels, colorbar,
axis grid lines or title.

	fontsize (int) – font size for ticklabels, title, axis labels, colorbar
ticklabels.

	fill_color (str or color tuple) – color to use as background color.
If data have missings, they will be shown as this color.
It is better to use a grey than while to better distinguish missings.

	
alternateTicks(cbar, ticks)

	Create alternating ticks and ticklabels for colorbar

	Parameters

	
	cbar (matplotlib colorbar obj) – input colorbar obj to alter.

	ticks (list or array) – ticks of the colorbar.

	Returns

	cbar (matplotlib colorbar obj) – the altered colorbar.

Only works for horizontal colorbar with discrete ticks. As vertical
colorbar doesn’t tend to have overlapping tick labels issue.

Update time: 2021-12-30 11:07:10: deprecated, use global function
alternateTicks() instead.

	
classmethod getExtend(method)

	Get colorbar overflow on both ends

	Returns

	extend (str) –

	‘both’, ‘min’, ‘max’ or ‘neither’. Determined
	from the method obj.

	
getGeo()

	Get geometry layout of the axis and font size

	Returns

	geo (nrows, ncols) – subplot layout of the figure.
subidx (int): index of the axis obj in the (nrows, ncols) layout.

i.e. 1 for the 1st subplot.

	fontsize (int): default font size. This is determined from an
	empirical formula that scales down the default font size
for a bigger grid layout.

	
getGrid()

	Get x- and y- coordnates

	Returns

	xarray (1darray) – 1d array of the x-coordinates.
yarray (1darray): 1d array of the y-coordinates.
lons,lats (ndarray): 2d array of the x- and y- coordinates, as

created from lons, lats = np.meshgrid(xarray, yarray).

	
getLabelBool()

	Decide whether to plot axis ticks and ticklabels on the 4 sides.

	Returns

	parallels (list) –

	boolean flag for the x-axis ticks/labels on 4 sides:
	[left, right, top, bottom]

	meridians (list): boolean flag for the y-axis ticks/labels on 4 sides:
	[left, right, top, bottom]

	
getLabelBoolForShareXY(geo, idx)

	Decide ticks and ticklabels on the 4 sides with shared x and y.

	Parameters

	
	geo (nrows, ncols) – subplot layout of the figure.

	idx (int) – index of the axis obj in the (nrows, ncols) layout.
i.e. 1 for the 1st subplot.

	Returns

	parallels (list) –

	boolean flag for the x-axis ticks/labels on 4 sides:
	[left, right, top, bottom]

	meridians (list): boolean flag for the y-axis ticks/labels on 4 sides:
	[left, right, top, bottom]

	
plot()

	Main plotting interface

Calls the core plotting function self._plot(), which handles the
2D plotting depending on the plotting method.
Then plots axes, colorbar and title.

	Returns

	self.cs (mappable) –

	the mappable obj, e.g. return value from contour()
	or contourf().

	
plotAxes()

	Plot axes ticks and ticklabels

	
plotColorbar()

	Plot colorbar

	Returns

	cbar (matplotlib colorbar obj) – colorbar obj.

Only creates a colorbar for isofill/contourf or isoline/contour plots.

	
plotTitle()

	Plot title

Use self.title as the figure title if self.ax is the single plot in the
figure. If None, automatically get an alphabetic subtitle if self.ax is
a subplot, e.g. ‘(a)’ for the 1st subplot, ‘(d)’ for the 4th one.
If self.title is str and self.ax is a subplot, prepend self.title with
the alphabetic index. One can force overriding the alphabetic index
by giving a title str in the format of ‘(x) xxxx’, e.g. ‘(p) subplot-p’.

	
class base_utils.Plot2Quiver(u, v, method, ax=None, xarray=None, yarray=None, title=None, label_axes=True, axes_grid=False, clean=False, fontsize=None, units=None, fill_color='w', curve=False)

	2D vector plotting class

For geographical vector plots, see Plot2QuiverBasemap or Plot2QuiverCartopy,
which handles equivalent plotting with geographical map projections.

	
__init__(u, v, method, ax=None, xarray=None, yarray=None, title=None, label_axes=True, axes_grid=False, clean=False, fontsize=None, units=None, fill_color='w', curve=False)

	
	Parameters

	
	u (ndarray) – x- and y-component of velocity to plot.
Mush have dimensions >= 2. For data with rank>2, take the slab
from the last 2 dimensions.

	v (ndarray) – x- and y-component of velocity to plot.
Mush have dimensions >= 2. For data with rank>2, take the slab
from the last 2 dimensions.

	method (Quiver obj) – quiver plotting method. Determines how to plot
the quivers.

	Keyword Arguments

	
	ax (matplotlib axis or None) – axis obj. Determines where to plot.
If None, create a new.

	xarray (1darray or None) – array to use as the x-coordinates. If None,
use the indices of the last dimension: np.arange(slab.shape[-1]).

	yarray (1darray or None) – array to use as the y-coordinates. If None,
use the indices of the 2nd last dimension: np.arange(slab.shape[-2]).

	title (str or None) – text as the figure title if <ax> is the
single plot in the figure. If None, automatically
get an alphabetic subtitle if <ax> is a subplot, e.g. ‘(a)’
for the 1st subplot, ‘(d)’ for the 4th one. If str and <ax>
is a subplot, prepend <title> with the alphabetic index.
One can force overriding the alphabetic index by giving a title
str in the format of ‘(x) xxxx’, e.g. ‘(p) subplot-p’.

	label_axes (bool or 'all' or tuple) – controls axis ticks and
ticklabels. If True, don’t exert any inference other than
changing the ticklabel fontsize, and let matplotlib put the
ticks and ticklabels (i.e. default only left and bottom axes).
If False, turn off all ticks and ticklabels.
If ‘all’, plot ticks and ticks labels on all 4 sides.
If (left, right, top, bottom),
specify which side to plot ticks/ticklabels. Each swith is a
bool or binary. If None, will set the ticks/ticklabels such
that the interior subplots have no ticks/ticklabels, edge
subplots have ticks/ticklabels on the outer edges, i.e. similar
as the ‘sharex’, ‘sharey’ options. Location of the subplot
is determined from return of ax.get_geometry().

	axes_grid (bool) – whether to add axis grid lines.

	clean (bool) – if False, don’t plot axis ticks/ticklabels, colorbar,
axis grid lines or title.

	fontsize (int) – font size for ticklabels, title, axis labels, colorbar
ticklabels.

	units (str or None) – unit of <u> and <v>. Will be plotted next to
the reference vector.

	fill_color (str or color tuple) – color to use as background color.
If data have missings, they will be shown as this color.

	curve (bool) – whether to plot quivers as curved vectors. Experimental.

	
plot()

	Main plotting interface

Calls the core plotting function self._plot(), which handles the
2D plotting using quiver plotting method.
Then plots axes, quiverkey and title.

	Returns

	self.quiver (mappable) – the quiver obj, i.e. return value quiver().

	
plotkey()

	Plot the reference quiver key

	Returns

	quiverkey (quiver key).

	
class base_utils.Quiver(step=1, reso=None, scale=None, keylength=None, linewidth=0.0015, color='k', alpha=1.0)

	Plotting method for quiver plots

	
__init__(step=1, reso=None, scale=None, keylength=None, linewidth=0.0015, color='k', alpha=1.0)

	Plotting method for quiver plots

	Keyword Arguments

	
	step (int) – sub-sample steps in both x- and y- axes. U and V
data are sub-sampled using U[::step,::step].

	reso (int or None) – if not None, regrid input U and V data to a
lower resolution, measured in grids.
If both < reso > and <step> are given, use <reso>.
Requires scipy for this functionality.

	scale (float or None) – see same arg as matplotlib.pyplot.quiver().

	keylength (float or None) – see same arg as matplotlib.pylot.quiver().

	linewidth (float) – line width.

	color (str or color tuple) – color to plot quiver arrows.

	alpha (float) – transparent level in [0, 1].

	
class base_utils.Shading(color='0.5', alpha=0.5)

	Plotting method for shading plots

	
__init__(color='0.5', alpha=0.5)

	Plotting method for shading plots

	Keyword Arguments

	
	color (str or color tuple) – color of shading.

	alpha (float) – transparent level, in range of [0, 1].

	
base_utils.alternateTicks(cbar, ticks=None, fontsize=9)

	Create alternating ticks and ticklabels for colorbar

	Parameters

	cbar (matplotlib colorbar obj) – input colorbar obj to alter.

	Keyword Arguments

	
	ticks (list or array or None) – ticks of the colorbar. If None,
get from cbar.get_ticks().

	fontsize (str) – font size for tick labels.

	Returns

	cbar (matplotlib colorbar obj) – the altered colorbar.

Only works for horizontal colorbar with discrete ticks. As vertical
colorbar doesn’t tend to have overlapping tick labels issue.

	
base_utils.getColorbarPad(ax, orientation, base_pad=0.0)

	Compute padding value for colorbar axis creation

	Parameters

	
	ax (Axis obj) – axis object used as the parent axis to create colorbar.

	orientation (str) – ‘horizontal’ or ‘vertical’.

	Keyword Arguments

	base_pad (float) – default pad. The resultant pad value is the computed
space + base_pad.

	Returns

	pad (float) – the pad argument passed to make_axes_gridspec() function.

	
base_utils.getColormap(cmap)

	Get a colormap

	Parameters

	cmap (matplotlib colormap, str or None) – if colormap, return as is.
if str, get a colormap by name: getattr(plt.cm, cmap).
If None, use default of rcParams[‘default_cmap’].

	Returns

	cmap (matplotlib colormap) – matplotlib colormap.

	
base_utils.getMissingMask(slab)

	Get a bindary array denoting missing (masked or nan).

	Parameters

	slab (ndarray) – input array that may contain masked values or nans.

	Returns

	mask (ndarray) –

	bindary array with same shape as <slab> with 1s for
	missing, 0s otherwise.

	
base_utils.getQuantiles(slab, quantiles=None, verbose=True)

	Find quantiles of a slab

	Parameters

	slab (ndarray) – input ndarray whose quantiles will be found.

	Keyword Arguments

	quantiles (float or a list of floats) – desired quantiles(s).

	Returns

	results (ndarray) – 1darray, left quantiles

	
base_utils.getRange(vars, min_level=None, max_level=None, ql=None, qr=None, verbose=True)

	Get min/max value

	Parameters

	vars (list) – a list of ndarrays.

	Keyword Arguments

	
	min_level (None or float) – given minimum level.

	max_level (None or float) – given maximum level.

	ql (None or float) – given left quantile.

	qr (None or float) – given right quantile.

	Returns

	vmin (float) – lowest level to take from variables.
vmax (float): highest level to take from variables.
data_min (float): lowest level among variables.
data_max (float): highest level among variables.

	
base_utils.getSlab(var, index1=-1, index2=-2, verbose=True)

	Get a slab from a variable

	Parameters

	var – (ndarray): ndarray with dimension >=2.

	Keyword Arguments

	index1,index2 (int) – indices denoting the dimensions that define a 2d
slab.

	Returns

	slab (ndarray) –

	the (1st) slab from <var>.
	E.g. <var> has dimension (12,1,241,480), getSlab(var) will
return the 1st time point with singleton dimension squeezed.

	
base_utils.index2Letter(index, verbose=True)

	Translate an integer index to letter index

	Parameters

	index (int) – integer index for a subplot.

	Returns

	letter (str) – corresponding letter index for <index>.

1 (a)
2 (b)
3 (c)
… …
27 (aa)
…
52 (zz)

	
base_utils.mkscale(n1, n2, nc=12, zero=1)

	Create nice looking levels given a min and max.

	Parameters

	
	n1 (floats) – min and max levels between which to create levels.

	n2 (floats) – min and max levels between which to create levels.

	Keyword Arguments

	
	nc (int) – suggested number of levels. Note that the resulant levels
may not have the exact number of levels as required.

	zero (int) – Not all implemented yet so set to 1 but values will be:
-1: zero MUST NOT be a contour

0: let the function decide # NOT IMPLEMENTED
1: zero CAN be a contour (default)
2: zero MUST be a contour

	Returns

	cnt (list) –

	a list of levels between approximately <n1> and <n2>,
	with a number of levels more or less as <nc>.

Examples of Use:
>>> vcs.mkscale(0,100)
[0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]
>>> vcs.mkscale(0,100,nc=5)
[0.0, 20.0, 40.0, 60.0, 80.0, 100.0]
>>> vcs.mkscale(-10,100,nc=5)
[-25.0, 0.0, 25.0, 50.0, 75.0, 100.0]
>>> vcs.mkscale(-10,100,nc=5,zero=-1)
[-20.0, 20.0, 60.0, 100.0]
>>> vcs.mkscale(2,20)
[2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]
>>> vcs.mkscale(2,20,zero=2)
[0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]

Copied from vcs/util.py

	
base_utils.pickPoint(ax, color='y')

	Pick points from plot and store coordinates.

	Parameters

	ax (matplotlib axis) – axis from whose plot to pick points.

	Keyword Arguments

	color (str or RGB tuple) – Color of picked points.

	Returns

	points (list) – list of (x,y) coordinates.

	
base_utils.plot2(var, method, ax=None, xarray=None, yarray=None, var_v=None, **kwargs)

	Wrapper 2D plotting interface function

	Parameters

	
	var (ndarray) – input data to plot. Determines what to plot.
Mush have dimensions >= 2.
For data with rank>2, take the slab from the last 2 dimensions.

	method (PlotMethod) – plotting method. Determines how to plot.
Could be Isofill, Isoline, Boxfill, Quiver, Shading, Hatch, GIS.

	Keyword Arguments

	
	ax (matplotlib axis or None) – axis obj. Determines where to plot.
If None, create a new.

	xarray (1darray or None) – array to use as the x-coordinates. If None,
use the indices of the last dimension: np.arange(slab.shape[-1]).

	yarray (1darray or None) – array to use as the y-coordinates. If None,
use the indices of the 2nd last dimension: np.arange(slab.shape[-2]).

	var_v (ndarray or None) – if a quiver plot (method is Quiver), the
y-component of the velocity data, and <var> is the x-component.

	nc_interface (str) – netcdf data interfacing module, could be ‘cdat’,
‘xarray’, ‘iris’ or ‘netcdf4’.

	geo_interface (str) – geographical plotting module, could be ‘basemap’,
or ‘cartopy’.

	isgeomap (bool) – whether to use geographcial plot.

	projection (str) – if use geographical plot, the map projection.

	bmap (basemap obj or None) – reuse an existing basemap obj if not None.

	title (str or None) – text as the figure title if <ax> is the
single plot in the figure. If None, automatically
get an alphabetic subtitle if <ax> is a subplot, e.g. ‘(a)’
for the 1st subplot, ‘(d)’ for the 4th one. If str and <ax>
is a subplot, prepend <title> with the alphabetic index.
One can force overriding the alphabetic index by giving a title
str in the format of ‘(x) xxxx’, e.g. ‘(p) subplot-p’.

	label_axes (bool or 'all' or tuple) – controls axis ticks and
ticklabels. If True, don’t exert any inference other than
changing the ticklabel fontsize, and let matplotlib put the
ticks and ticklabels (i.e. default only left and bottom axes).
If False, turn off all ticks and ticklabels.
If ‘all’, plot ticks and ticks labels on all 4 sides.
If (left, right, top, bottom),
specify which side to plot ticks/ticklabels. Each swith is a
bool or binary. If None, will set the ticks/ticklabels such
that the interior subplots have no ticks/ticklabels, edge
subplots have ticks/ticklabels on the outer edges, i.e. similar
as the ‘sharex’, ‘sharey’ options. Location of the subplot
is determined from return of ax.get_geometry().

	axes_grid (bool) – whether to add axis grid lines.

	legend (str or None) – controls whether to share colorbar or not.
A colorbar is only plotted for Isofill/Isoline plots.
If None, don’t put colorbar. If ‘local’, <ax> has its own
colorbar. If ‘global’, all subplots in the figure share a
single colorbar, which is created by the 1st subplot in the
figure, which is determined from the return of ax.get_geometry().

	legend_ori (str) – orientation of colorbar. ‘horizontal’ or ‘vertical’.

	clean (bool) – if False, don’t plot axis ticks/ticklabels, colorbar,
axis grid lines or title.

	fontsize (int) – font size for ticklabels, title, axis labels, colorbar
ticklabels.

	fix_aspect (bool) – passed to the constructor of basemap: Basemap(xxx,
fix_aspect=fix_aspect).

	fill_color (str or color tuple) – color to use as background color.
If data have missings, they will be shown as this color.
It is better to use a grey than while to better distinguish missings.

	Returns

	plotobj (Plot2D obj).

	
base_utils.regridToReso(var, inlat, inlon, dlat, dlon, lat_idx=-2, lon_idx=-1, method='linear', return_coords=False, verbose=True)

	Regrid to given resolution, using scipy

	Parameters

	
	var (ndarray) – input nd array.

	inlat (1darray) – input latitude coordinates.

	inlon (1darray) – input longitude coordinates.

	dlat (float) – target latitudinal resolution.

	dlon (float) – target longitudinal resolution.

	Keyword Arguments

	
	lat_idx (int) – index for the latitude dimension.

	lon_idx (int) – index for the longitude dimension.

	method (str) – interpolation method, could be ‘linear’ or ‘nearest’.

	return_coords (bool) – if True, also return new lat/lon coordinates.

	Returns

	result (ndarray) – interpolated result.
newlat (1darray): if <return_coords> is True, the new latitude coordinates.
newlon (1darray): if <return_coords> is True, the new longitude coordinates.

	
base_utils.remappedColorMap2(cmap, vmin, vmax, vcenter, name='shiftedcmap')

	Re-map the colormap to split positives and negatives.

	Parameters

	
	cmap (colormap) – the matplotlib colormap to be altered.

	vmin (float) – minimal level in data.

	vmax (float) – maximal level in data.

	vcenter (float) – central level in data.

	Keyword Arguments

	name (str) – name for the altered colormap.

	Returns

	newcmap (colormap) –

	re-mapped colormap such that:
	
	if vmin < vmax <= vcenter:
	0 in color map corresponds to vmin
0.5 in color map corresponds to vmax

	if vcenter <= vmin < vmax:
	0.5 in color map corresponds to vmin
1.0 in color map corresponds to vmax

E.g. if vcenter=0, this splits a diverging colormap to use
only the negative/positive half the original colors.

	
base_utils.restoreParams()

	Restore default parameters

Documentation page for basemap_utils.py

Basemap 2D plotting functions and classes.

Author: guangzhi XU (xugzhi1987@gmail.com)
Update time: 2021-02-14 13:42:31.

	
class basemap_utils.Plot2Basemap(*args: Any, **kwargs: Any)

	2D geographical plotting class, using basemap

	
__init__(var, method, xarray, yarray, ax=None, title=None, label_axes=True, axes_grid=False, legend=None, legend_ori=None, clean=False, fontsize=None, projection=None, fill_color=None, fix_aspect=False, isdrawcoastlines=True, isdrawcountries=True, isdrawcontinents=False, isdrawrivers=False, isfillcontinents=False, bmap=None)

	2D geographical plotting class, using basemap

	Parameters

	
	var (ndarray) – input data to plot. Determines what to plot.
Mush have dimensions >= 2.
For data with rank>2, take the slab from the last 2 dimensions.

	method (PlotMethod) – plotting method. Determines how to plot.
Could be Isofill, Isoline, Boxfill, Quiver, Shading, Hatch, GIS.

	xarray (1darray or None) – array to use as the x-coordinates. If None,
use the indices of the last dimension: np.arange(slab.shape[-1]).

	yarray (1darray or None) – array to use as the y-coordinates. If None,
use the indices of the 2nd last dimension: np.arange(slab.shape[-2]).

	Keyword Arguments

	
	ax (matplotlib axis or None) – axis obj. Determines where to plot.
If None, create a new.

	title (str or None) – text as the figure title if <ax> is the
single plot in the figure. If None, automatically
get an alphabetic subtitle if <ax> is a subplot, e.g. ‘(a)’
for the 1st subplot, ‘(d)’ for the 4th one. If str and <ax>
is a subplot, prepend <title> with the alphabetic index.
One can force overriding the alphabetic index by giving a title
str in the format of ‘(x) xxxx’, e.g. ‘(p) subplot-p’.

	label_axes (bool or 'all' or tuple) – controls axis ticks and
ticklabels. If True, don’t exert any inference other than
changing the ticklabel fontsize, and let matplotlib put the
ticks and ticklabels (i.e. default only left and bottom axes).
If False, turn off all ticks and ticklabels.
If ‘all’, plot ticks and ticks labels on all 4 sides.
If (left, right, top, bottom),
specify which side to plot ticks/ticklabels. Each swith is a
bool or binary. If None, will set the ticks/ticklabels such
that the interior subplots have no ticks/ticklabels, edge
subplots have ticks/ticklabels on the outer edges, i.e. similar
as the ‘sharex’, ‘sharey’ options. Location of the subplot
is determined from return of ax.get_geometry().

	axes_grid (bool) – whether to add axis grid lines.

	legend (str or None) – controls whether to share colorbar or not.
A colorbar is only plotted for Isofill/Isoline plots.
If None, don’t put colorbar. If ‘local’, <ax> has its own
colorbar. If ‘global’, all subplots in the figure share a
single colorbar, which is created by the 1st subplot in the
figure, which is determined from the return of ax.get_geometry().

	legend_ori (str) – orientation of colorbar. ‘horizontal’ or ‘vertical’.

	clean (bool) – if False, don’t plot axis ticks/ticklabels, colorbar,
axis grid lines or title.

	fontsize (int) – font size for ticklabels, title, axis labels, colorbar
ticklabels.

	projection (str) – the map projection.

	fill_color (str or color tuple) – color to use as background color.
If data have missings, they will be shown as this color.
It is better to use a grey than while to better distinguish missings.

	fix_aspect (bool) – passed to the constructor of basemap: Basemap(xxx,
fix_aspect=fix_aspect).

	isdrawcoastlines (bool) – whether to draw continent outlines or not.

	isdrawcountries (bool) – whether to draw contry boundaries or not.

	isdrawrivers (bool) – whether to draw rivers or not.

	isfillcontinents (bool) – whether to fill continents or not.

	bmap (basemap obj or None) – reuse an existing basemap obj if not None.

	
createBmap()

	Create basemap based on data domain

	
plotAxes()

	Plot longitude/latitude ticks and ticklabels

Overwrites parent classes method

	
plotOthers()

	Plot other map information

Plot continents, contries, rivers if needed.

	
class basemap_utils.Plot2QuiverBasemap(*args: Any, **kwargs: Any)

	2D geographical quiver plotting class, using basemap

	
__init__(u, v, method, xarray, yarray, ax=None, title=None, label_axes=True, axes_grid=False, clean=False, fontsize=None, projection=None, units=None, fill_color='w', curve=False, fix_aspect=False, isdrawcoastlines=True, isdrawcountries=True, isdrawcontinents=False, isdrawrivers=False, isfillcontinents=False, bmap=None)

	2D geographical quiver plotting class, using basemap

	Parameters

	
	u (ndarray) – x- and y-component of velocity to plot.
Mush have dimensions >= 2. For data with rank>2, take the slab
from the last 2 dimensions.

	v (ndarray) – x- and y-component of velocity to plot.
Mush have dimensions >= 2. For data with rank>2, take the slab
from the last 2 dimensions.

	method (Quiver obj) – quiver plotting method. Determines how to plot
the quivers.

	xarray (1darray or None) – array to use as the x-coordinates. If None,
use the indices of the last dimension: np.arange(slab.shape[-1]).

	yarray (1darray or None) – array to use as the y-coordinates. If None,
use the indices of the 2nd last dimension: np.arange(slab.shape[-2]).

	Keyword Arguments

	
	ax (matplotlib axis or None) – axis obj. Determines where to plot.
If None, create a new.

	title (str or None) – text as the figure title if <ax> is the
single plot in the figure. If None, automatically
get an alphabetic subtitle if <ax> is a subplot, e.g. ‘(a)’
for the 1st subplot, ‘(d)’ for the 4th one. If str and <ax>
is a subplot, prepend <title> with the alphabetic index.
One can force overriding the alphabetic index by giving a title
str in the format of ‘(x) xxxx’, e.g. ‘(p) subplot-p’.

	label_axes (bool or 'all' or ((left_y, right_y, top_y, top_y) – (left_x, right_x, top_x, top_x)) or None): controls axis ticks and
ticklabels. If True, don’t exert any inference other than
changing the ticklabel fontsize, and let matplotlib put the
ticks and ticklabels (i.e. default only left and bottom axes).
If False, turn off all ticks and ticklabels.
If ‘all’, plot ticks and ticks labels on all 4 sides.
If ((left_y, right_y, top_y, top_y), (left_x, right_x, top_x, top_x)),
specify which side to plot ticks/ticklabels. Each swith is a
bool or binary. If None, will set the ticks/ticklabels such
that the interior subplots have no ticks/ticklabels, edge
subplots have ticks/ticklabels on the outer edges, i.e. similar
as the ‘sharex’, ‘sharey’ options. Location of the subplot
is determined from return of ax.get_geometry().

	axes_grid (bool) – whether to add axis grid lines.

	clean (bool) – if False, don’t plot axis ticks/ticklabels, colorbar,
axis grid lines or title.

	fontsize (int) – font size for ticklabels, title, axis labels, colorbar
ticklabels.

	projection (str) – the map projection.

	units (str or None) – unit of <u> and <v>. Will be plotted next to
the reference vector.

	fill_color (str or color tuple) – color to use as background color.
If data have missings, they will be shown as this color.
It is better to use a grey than while to better distinguish missings.

	curve (bool) – whether to plot quivers as curved vectors. Experimental.

	fix_aspect (bool) – passed to the constructor of basemap: Basemap(xxx,
fix_aspect=fix_aspect).

	isdrawcoastlines (bool) – whether to draw continent outlines or not.

	isdrawcountries (bool) – whether to draw contry boundaries or not.

	isdrawrivers (bool) – whether to draw rivers or not.

	isfillcontinents (bool) – whether to fill continents or not.

	bmap (basemap obj or None) – reuse an existing basemap obj if not None.

	
plot()

	Main plotting interface

Calls the core plotting function self._plot(), which handles the
2D plotting using quiver plotting method.
Then plots axes, quiverkey and title.

	Returns

	self.quiver (mappable) – the quiver obj, i.e. return value quiver().

	
basemap_utils.blueMarble(lat1, lon1, lat2, lon2, fig=None, projection='merc')

	Plot bluemarble plot as background.

	Parameters

	
	lat1 (floats) – low-left corner. Longitude range 0-360

	lon1 (floats) – low-left corner. Longitude range 0-360

	lat2 (floats) – upper-right corner.

	lon2 (floats) – upper-right corner.

	Keyword Arguments

	
	fig (matplotlib figure or None) – If None, create a new.

	projection (str) – map projection.

NOTE: due to a bug in basemap, if the plot range is crossing the
dateline, need to plot 2 separate plots joining at the dateline.

Documentation page for cdat_utils.py

Interfacing netcdf data via CDAT

Author: guangzhi XU (xugzhi1987@gmail.com)
Update time: 2020-12-05 10:28:38.

	
cdat_utils.checkGeomap(var, xarray, yarray)

	Check input args suitable for geo plot or not and do some preprocessing

	Parameters

	
	var (TransientVariable) – input N-d TransientVariable.

	xarray (ndarray) – 1d array, x-coordinates.

	yarray (ndarray) – 1d array, y-coordinates.

	Returns

	isgeo (bool) –

	True if inputs are suitable for geographical plot, False
	otherwise.

	var (TransientVariable): input <var> with latitude order reversed if
	needed.

	xx (ndarray): 1d array, use longitude axis of <var> if possible,
	<xarray> otherwise

	yy (ndarray): 1d array, use latitude axis of <var> if possible,
	<yarray> otherwise

	
cdat_utils.increasingLatitude(slab, verbose=False)

	Changes a slab so that is always has latitude running from
south to north.

	Parameters

	slab (TransientVariable) – input TransientVariable, need to have a
proper latitude axis.

	Returns

	slab2 (TransientVariable) –

	if latitude axis is reversed, or <slab>
	otherwise.

If <slab> has a latitude axis, and the latitudes run from north to south, a
copy <slab2> is made with the latitudes reversed, i.e., running from south
to north.

	
cdat_utils.interpretAxis(axis, ref_var, verbose=True)

	Interpret and convert an axis id to index

	Parameters

	
	axis (int or str) – axis option, integer (e.g. 0 for 1st dimension) or
string (e.g. ‘x’ for x-dimension).

	ref_var (TransientVariable) – reference variable.

	Returns

	axis_index (int) – the index of required axis in <ref_var>.

	E.g. index=interpretAxis(‘time’,ref_var)
	index=0

index=interpretAxis(1,ref_var)
index=1

	
cdat_utils.isInteger(x)

	Check an input is integer

	Parameters

	x (unknow type) – input

	Returns

	True if <x> is integer type, False otherwise.

	
cdat_utils.readData(varid)

	Read sample netcdf data

	Parameters

	varid (str) – id of variable to read.

	Returns

	var (TransientVariable) – sample netcdf data.

Documentation page for netcdf4_utils.py

Interfacing netcdf data via netcdf4

Author: guangzhi XU (xugzhi1987@gmail.com; guangzhi.xu@outlook.com)
Update time: 2021-01-24 17:30:56.

	
netcdf4_utils.checkGeomap(var, xarray, yarray)

	Check input args suitable for geo plot or not and do some preprocessing

	Parameters

	
	var (TransientVariable) – input N-d TransientVariable.

	xarray (ndarray) – 1d array, x-coordinates.

	yarray (ndarray) – 1d array, y-coordinates.

	Returns

	isgeo (bool) –

	True if inputs are suitable for geographical plot, False
	otherwise.

	var (TransientVariable): input <var> with latitude order reversed if
	needed.

	xx (ndarray): 1d array, use longitude axis of <var> if possible,
	<xarray> otherwise

	yy (ndarray): 1d array, use latitude axis of <var> if possible,
	<yarray> otherwise

	
netcdf4_utils.readData(varid)

	Read in a variable from an netcdf file

	Parameters

	
	abpath_in (str) – absolute file path to the netcdf file.

	varid (str) – id of variable to read.

	Returns

	ncvarNV (NCVAR) – variable stored as an NCVAR obj.

Documentation page for cartopy_utils.py

Cartopy related utilities

Author: guangzhi XU (xugzhi1987@gmail.com)
Update time: 2020-12-05 10:28:38.

	
class cartopy_utils.Plot2Cartopy(*args: Any, **kwargs: Any)

	

	
class cartopy_utils.Plot2QuiverCartopy(*args: Any, **kwargs: Any)

	

 Python Module Index

 b |
 c |
 n

 		 	

 		
 b	

 	
 	
 base_utils	

 	
 	
 basemap_utils	

 		 	

 		
 c	

 	
 	
 cartopy_utils	

 	
 	
 cdat_utils	

 		 	

 		
 n	

 	
 	
 netcdf4_utils	

Index

 _
 | A
 | B
 | C
 | G
 | H
 | I
 | M
 | N
 | P
 | Q
 | R
 | S

_

 	
 	__init__() (base_utils.Boxfill method)

 	(base_utils.GIS method)

 	(base_utils.Hatch method)

 	(base_utils.Isofill method)

 	(base_utils.Isoline method)

 	(base_utils.Pcolor method)

 	(base_utils.Plot2D method)

 	(base_utils.Plot2Quiver method)

 	(base_utils.Quiver method)

 	(base_utils.Shading method)

 	(basemap_utils.Plot2Basemap method)

 	(basemap_utils.Plot2QuiverBasemap method)

A

 	
 	alternateTicks() (base_utils.Plot2D method)

 	(in module base_utils)

B

 	
 	
 base_utils

 	module

 	
 basemap_utils

 	module

 	
 	blueMarble() (in module basemap_utils)

 	Boxfill (class in base_utils)

C

 	
 	
 cartopy_utils

 	module

 	
 cdat_utils

 	module

 	
 	checkGeomap() (in module cdat_utils)

 	(in module netcdf4_utils)

 	createBmap() (basemap_utils.Plot2Basemap method)

G

 	
 	getColorbarPad() (in module base_utils)

 	getColormap() (in module base_utils)

 	getExtend() (base_utils.Plot2D class method)

 	getGeo() (base_utils.Plot2D method)

 	getGrid() (base_utils.Plot2D method)

 	getLabelBool() (base_utils.Plot2D method)

 	
 	getLabelBoolForShareXY() (base_utils.Plot2D method)

 	getMissingMask() (in module base_utils)

 	getQuantiles() (in module base_utils)

 	getRange() (in module base_utils)

 	getSlab() (in module base_utils)

 	GIS (class in base_utils)

H

 	
 	Hatch (class in base_utils)

I

 	
 	increasingLatitude() (in module cdat_utils)

 	index2Letter() (in module base_utils)

 	interpretAxis() (in module cdat_utils)

 	
 	isInteger() (in module cdat_utils)

 	Isofill (class in base_utils)

 	Isoline (class in base_utils)

M

 	
 	mkscale() (in module base_utils)

 	
 module

 	base_utils

 	basemap_utils

 	cartopy_utils

 	cdat_utils

 	netcdf4_utils

N

 	
 	
 netcdf4_utils

 	module

P

 	
 	Pcolor (class in base_utils)

 	pickPoint() (in module base_utils)

 	plot() (base_utils.Plot2D method)

 	(base_utils.Plot2Quiver method)

 	(basemap_utils.Plot2QuiverBasemap method)

 	plot2() (in module base_utils)

 	Plot2Basemap (class in basemap_utils)

 	Plot2Cartopy (class in cartopy_utils)

 	Plot2D (class in base_utils)

 	
 	Plot2Quiver (class in base_utils)

 	Plot2QuiverBasemap (class in basemap_utils)

 	Plot2QuiverCartopy (class in cartopy_utils)

 	plotAxes() (base_utils.Plot2D method)

 	(basemap_utils.Plot2Basemap method)

 	plotColorbar() (base_utils.Plot2D method)

 	plotkey() (base_utils.Plot2Quiver method)

 	plotOthers() (basemap_utils.Plot2Basemap method)

 	plotTitle() (base_utils.Plot2D method)

Q

 	
 	Quiver (class in base_utils)

R

 	
 	readData() (in module cdat_utils)

 	(in module netcdf4_utils)

 	
 	regridToReso() (in module base_utils)

 	remappedColorMap2() (in module base_utils)

 	restoreParams() (in module base_utils)

S

 	
 	Shading (class in base_utils)

LICENSE

	GNU GENERAL PUBLIC LICENSE
	Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for

software and other kinds of works.

The licenses for most software and other practical works are designed

to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program–to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you

these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:

(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains

that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run

modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.

States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and

modification follow.

TERMS AND CONDITIONS

	Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of

works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this

License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work

in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a “modified version” of the
earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based

on the Program.

To “propagate” a work means to do anything with it that, without

permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other

parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices”

to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

	Source Code.

The “source code” for a work means the preferred form of the work

for making modifications to it. “Object code” means any non-source
form of a work.

A “Standard Interface” means an interface that either is an official

standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other

than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all

the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users

can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that

same work.

	Basic Permissions.

All rights granted under this License are granted for the term of

copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not

convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under

the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

	Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological

measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid

circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of
technological measures.

	Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you

receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,

and you may offer support or warranty protection for a fee.

	Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to

produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
“keep intact all notices”.

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent

works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

	Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms

of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded

from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any

tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

“Installation Information” for a User Product means any methods,

procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or

specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a

requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,

in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

	Additional Terms.

“Additional permissions” are terms that supplement the terms of this

License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option

remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you

add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further

restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you

must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the

form of a separately written license, or stated as exceptions;
the above requirements apply either way.

	Termination.

You may not propagate or modify a covered work except as expressly

provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your

license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

	Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or

run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

	Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically

receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an

organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the

rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

	Patents.

A “contributor” is a copyright holder who authorizes use under this

License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims

owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free

patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express

agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,

and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or

arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is “discriminatory” if it does not include within

the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting

any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

	No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

	Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have

permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

	Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of

the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the

Program specifies that a certain numbered version of the GNU General
Public License “or any later version” applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future

versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different

permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

	Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

	Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

	Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided

above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

{one line to give the program’s name and a brief idea of what it does.}
Copyright (C) {year} {name of author}

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short

notice like this when it starts in an interactive mode:

{project} Copyright (C) {year} {fullname}
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate
parts of the General Public License. Of course, your program’s commands
might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school,

if any, to sign a “copyright disclaimer” for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program

into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

 _static/minus.png

_static/plus.png

_static/file.png

_static/logo.png
&3

“— Gplot

_images/boxfill_pcolor.png
(a) default Boxfill (b) default Pcolor

0° 40° 80° 120°160°200°240°280°320° 0° 40° 80° 120°160°200°240°280°320°

95000 97500 100000 102500 95000 97500 100000 102500

_images/curved_quiver.png
— 10.00 m s¥+-1

curved quiver

80°

60°

40° ¥

20°

PN
[N

N
& -
0

3

o
;(%\
s

39

A

o

\

Z
.’{Q’ &
\ \) i

= 4

T

_,,__,,.\\\\\I,/'}//)}“\m|\,..

0° 40° 80° 120° 160° 200° 240° 280° 320°

_images/default_contourf.png
-20°

-40°

-60°

-80°

Default basemap

O‘a

+40° +80° +120° +160° -160° -120° -80° -40°
93800 95200 96600 98000 99400 100800102200103600105000

[o

94500 95900 97300 98700 100100101500102900104300

_images/gplot_schematic.png
Plot2D Plot2Quiver

Plot2Basemap || Plot2Cartopy “:PlotzouiverBasemapJ Plot2QuiverCartopy

nav.xhtml

 Table of Contents

 		
 Welcome to Gplot’s documentation!

 		
 Basic workflow

 		
 Overall design of gplot

 		
 Basic plotting syntax

 		
 Isofill/Contourf plots

 		
 The Isofill class

 		
 Define the contour levels

 		
 1. Automatically derive from input data, and a given number of levels

 		
 2. Manually specify the contour levels.

 		
 Choose the colormap

 		
 Split the colormap colors

 		
 Overlay with stroke

 		
 The mappable object

 		
 Isoline/Contour plots

 		
 The Isoline class

 		
 Line width and color controls

 		
 Use dashed line for negatives

 		
 Label the contour lines

 		
 The mappable object

 		
 Boxfill/imshow plots

 		
 The Boxfill and Pcolor classes

 		
 Basic plot example

 		
 The mappable object

 		
 Colorbar

 		
 Positioning of the colorbar

 		
 Overflows on a colorbar

 		
 Alternating top and bottom ticks of a horizontal colorbar

 		
 Quiver plots

 		
 The Quiver class

 		
 Control the quiver density

 		
 Control the quiver lengths

 		
 Quiver overlay

 		
 Curved quiver plots

 		
 The mappable object

 		
 Subplot layouts

 		
 Recommended way of creating subplots

 		
 Automatically label the subplots with alphabetic indices

 		
 Others

 		
 netCDF interfaces

 		
 Axes ticks and ticklabels

 		
 Color for missing values

 		
 Font size

 		
 Default parameters

 		
 base_utils.py

 		
 Boxfill

 		
 Boxfill.__init__()

 		
 GIS

 		
 GIS.__init__()

 		
 Hatch

 		
 Hatch.__init__()

 		
 Isofill

 		
 Isofill.__init__()

 		
 Isoline

 		
 Isoline.__init__()

 		
 Pcolor

 		
 Pcolor.__init__()

 		
 Plot2D

 		
 Plot2D.__init__()

 		
 Plot2D.alternateTicks()

 		
 Plot2D.getExtend()

 		
 Plot2D.getGeo()

 		
 Plot2D.getGrid()

 		
 Plot2D.getLabelBool()

 		
 Plot2D.getLabelBoolForShareXY()

 		
 Plot2D.plot()

 		
 Plot2D.plotAxes()

 		
 Plot2D.plotColorbar()

 		
 Plot2D.plotTitle()

 		
 Plot2Quiver

 		
 Plot2Quiver.__init__()

 		
 Plot2Quiver.plot()

 		
 Plot2Quiver.plotkey()

 		
 Quiver

 		
 Quiver.__init__()

 		
 Shading

 		
 Shading.__init__()

 		
 alternateTicks()

 		
 getColorbarPad()

 		
 getColormap()

 		
 getMissingMask()

 		
 getQuantiles()

 		
 getRange()

 		
 getSlab()

 		
 index2Letter()

 		
 mkscale()

 		
 pickPoint()

 		
 plot2()

 		
 regridToReso()

 		
 remappedColorMap2()

 		
 restoreParams()

 		
 basemap_utils.py

 		
 Plot2Basemap

 		
 Plot2Basemap.__init__()

 		
 Plot2Basemap.createBmap()

 		
 Plot2Basemap.plotAxes()

 		
 Plot2Basemap.plotOthers()

 		
 Plot2QuiverBasemap

 		
 Plot2QuiverBasemap.__init__()

 		
 Plot2QuiverBasemap.plot()

 		
 blueMarble()

 		
 cdat_utils.py

 		
 checkGeomap()

 		
 increasingLatitude()

 		
 interpretAxis()

 		
 isInteger()

 		
 readData()

 		
 netcdf4_utils.py

 		
 checkGeomap()

 		
 readData()

 		
 cartopy_utils.py

 		
 Plot2Cartopy

 		
 Plot2QuiverCartopy

_images/label_axes_specified.png
Basemap label_axes=specified
0° 40° 80° 120° 160° 200° 240° 280° 320°

93800 95200 96600 98000 99400 100800 102200103600105000

[o

94500 95900 97300 98700 100100101500102900 104300

_images/quiver_comparison1.png
80°

60°

40°

20°

0°

—20°

-40°

—60°

—80°

80°

60°

40°

20° ¥

0°

—20° 11473

-40°

—60°

—80°

(a) default quiver

10.00 m s®=-1

(b) step=8

N O VAR

T\‘?‘T\\' 17

- 10.00 m sek-1

(d) reso=8

[FA TR S PECE
AR

0°

40°

80°

120°

160°

200°

240°

280° 320°

0° 40° 80°

120°

160°

200°

240°

280°

320°

80°

60°

‘I 40°

20°

0°

—20°

—40°

~t-60°

1 —s0°

80°

= 60°

40°

20°

0°

—20°

—40°

—60°

—80°

_images/isofill_overflow.png
Isofill with overflows

40° 80° 120° 160° 200° 240° 280° 320°
97800 99000 100200 101400 102600 103800

98400 99600 100800 102000 103200

_images/isoline_comparisons.png
80°
60°
40°

20° ¢

0°
—20°
—40°
—60°
—80°

80°
60°
40°

200

0°
—20°
—40°
—60°
—80°

(a) Default Isoline

(b) Thicker, blue Isoline

94000 96000 98000 100000102000104000
o —— S ——

95000 97000 99000 101000103000105000
(c) Dashed negative, black Isoline

(d) Dashed negative, black Isoline, 0 bold, labels

—1u0y;

0° 40° 80° 120° 160° 200° 240° 280° 320°

0° 40° 80° 120° 160° 200° 240° 280° 320°

_images/split_comparisons.png
o (a) negatives and positives, split=0

(b) negatives and positives, split=1

240
210
180
150
120

90

60

e it |

)
-12 4 4 12 20 28
T T e ——
-8) 8 16 24 -8) 8 16 24

240 (c) negatives and positives, split=2 (d) all positive, split=2 240
210 210
180 180
150 150
120 120

90 90

60 60

30 30

))

60 120 180 240 300 360 420

268 276 284 292 300 308
[T I T I T I T I

272 280 288 296 304

_images/sst_missing.png
white background

0° 40°E B80°E 120°E 160°E 160°W 120°W 80°W 40°W

273 280 287 294 301 308
grey background

40°E BO°E 120°E 160°E 160°W 120°W 80°W 40°W

273 280 287 294 301

_images/quiver_comparison2.png
80°

60°

40° 1.

20°

0°

—20°

—40°

—60°

—80°

80°

60°

40°

20° 7

0°

—20° 1}

—40°

—60°

—80°

(a) step=8, scale=None

(b) step=8, scale=200

N

v
\:

A AN s

1

: \/M

5

A
NS N

RPN
A ,\,\‘\:\:

Zrre

5

s
AR

(c) step=8, scale=500

(d) step=8, scale=500, keylength=20

SRR

=

Trreiiiaaas

7

P TR R

SSNRERERRY
A)
\\ v

Trreiiiaas

SR

P
;‘,//’;*'uu“\ 3

! [T

0°

40°

80°

120°

160°

200°

240°

280°

320°

0° 40° 80° 120° 160° 200°

240°

280°

320°

80°

60°

—20°

—40°

—60°

—80°

_images/quiver_overlay.png
80°

60°

40°

20°

quiver overlay

— 10.00 m -1

L
EE L ERTY
B T

P e

/Z;;\\\l TN

Aabbbata
PP R I,

0° 40° 80° 120° 160°

93800 95200 96600 98000 99400 100800 102200103600105000

200°

240° 280° 320°

94500 95900 97300 98700 100100101500102900104300

—20°

—40°

—60°

+r—80°

_images/stroke_comparison.png
80°
60°
40°
20°
0°
—20°
—40°
—60°
—80°

(a) Basemap isofill without stroke

(b) Basemap isofill with stroke

0°

40° 80° 120° 160° 200° 240° 280° 320° 0° 40° 80° 120° 160° 200° 240° 280° 320°
93800 95200 96600 98000 99400 100800 102200 103600 105000
T i T + T t T T : !
94500 95900 97300 98700 100100 101500 102900 104300

80°
60°
40°
20°
0°
—20°
—40°
—60°
—80°

